The Generalized Lipkin-Meshkov-Glick Model and the Modified Algebraic Bethe Ansatz
Autor: | Skrypnyk, Taras |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | SIGMA 18 (2022), 074, 18 pages |
Druh dokumentu: | Working Paper |
DOI: | 10.3842/SIGMA.2022.074 |
Popis: | We show that the Lipkin-Meshkov-Glick $2N$-fermion model is a particular case of one-spin Gaudin-type model in an external magnetic field corresponding to a limiting case of non-skew-symmetric elliptic $r$-matrix and to an external magnetic field directed along one axis. We propose an exactly-solvable generalization of the Lipkin-Meshkov-Glick fermion model based on the Gaudin-type model corresponding to the same $r$-matrix but arbitrary external magnetic field. This model coincides with the quantization of the classical Zhukovsky-Volterra gyrostat. We diagonalize the corresponding quantum Hamiltonian by means of the modified algebraic Bethe ansatz. We explicitly solve the corresponding Bethe-type equations for the case of small fermion number $N=1,2$. |
Databáze: | arXiv |
Externí odkaz: |