Steiner representations of hypersurfaces
Autor: | Antonelli, Vincenzo, Casnati, Gianfranco |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $X\subseteq{\mathbb P}^{n+1}$ be an integral hypersurface of degree $d$. We show that each locally Cohen-Macaulay instanton sheaf $\mathcal E$ on $X$ with respect to $\mathcal O_X\otimes\mathcal O_{\mathbb P^{n+1}}(1)$ in the sense of Definition 1.3 in arXiv:2205.04767 [math.AG] yields the existence of Steiner bundles $\mathcal G$ and $\mathcal F$ on $\mathbb P^{n+1}$ of the same rank $r$ and a morphism $\varphi\colon \mathcal G(-1)\to\mathcal F^\vee$ such that the form defining $X$ to the power $\mathrm{rk}(\mathcal E)$ is exactly $\det(\varphi)$. We inspect several examples for low values of $d$, $n$ and $\mathrm{rk}(\mathcal E)$. In particular, we show that the form defining a smooth integral surface in $\mathbb P^3$ is the pfaffian of some skew-symmetric morphism $\varphi\colon \mathcal F(-1)\to\mathcal F^\vee$, where $\mathcal F$ is a suitable Steiner bundle on $\mathbb P^3$ of sufficiently large even rank. Comment: 26 pages; The previous Section 6 is now Section 5. The previous Section 5 has been divided in two sections: Section 6 and Section 7. Final version to appear in the International Journal of Mathematics |
Databáze: | arXiv |
Externí odkaz: |