On Grothendieck groups and rings with exact sequences for the Picard, $K_{0}(R)^{\ast}$ and ideal class groups
Autor: | Tarizadeh, Abolfazl |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | The main goal of this article is to investigate the Grothendieck groups, especially the Grothendieck ring $K_{0}(R)$, the Picard group $\Pic(R)$ and the ideal class group $\Cl(R)$ of a given commutative ring $R$. Among the main results, we obtain a general theorem which asserts that for any commutative ring $R$ we have the following exact sequence of groups: $$\xymatrix{0\ar[r]&\Cl(R)\ar[r]&\Pic(R)\ar[r]&\Pic(T(R))}$$ where $T(R)$ denotes the total ring of fractions of $R$. As an application, ... Comment: 21 pages |
Databáze: | arXiv |
Externí odkaz: |