Autor: |
Camacho, G., Vahedi, J., Schuricht, D., Karrasch, C. |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Phys. Rev. B 106, 235132 (2022) |
Druh dokumentu: |
Working Paper |
DOI: |
10.1103/PhysRevB.106.235132 |
Popis: |
We study the effects of disorder in a one-dimensional model of $\mathbb{Z}_{3}$ Fock parafermions which can be viewed as a generalization of the prototypical Kitaev chain. Exact diagonalization is employed to determine level statistics, participation ratios, and the dynamics of domain walls. This allows us to identify ergodic as well as finite-size localized phases. In order to distinguish Anderson from many-body localization, we calculate the time evolution of the entanglement entropy in random initial states using tensor networks. We demonstrate that a purely quadratic parafermion model does not feature Anderson but many-body localization due to the nontrivial statistics of the particles. |
Databáze: |
arXiv |
Externí odkaz: |
|