Bilinear $\theta$-type Calder\'on-Zygmund operators and its commutator on generalized weighted Morrey spaces over RD-spaces
Autor: | He, Suixin, Tao, Shuangping |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | An RD-space $\mathcal{X}$ is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds in $\mathcal{X}$. In this setting, the authors establish the boundedness of bilinear $\theta$-type Calder\'on-Zygmund operator $T_{\theta}$ and its commutator $[b_1,b_2,T_{\theta}]$ generated by the function $b_1,b_2\in BMO(\mu)$ and $T_{\theta}$ on generalized weighted Morrey space $\mathcal{M}^{p,\phi}(\omega)$ and generalized weighted weak Morrey space $W\mathcal{M}^{p,\phi}(\omega)$ over RD-spaces. Comment: 20 pages |
Databáze: | arXiv |
Externí odkaz: |