Gradient estimates of nonlinear equation on complete noncompact metric measure space with compact boundary

Autor: Cao, Xiangzhi
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper, firstly, we study gradient estimates for positive solution of the following equation \begin{equation*} \Delta_\xi(u)-\partial_t u- q u =A(u),t\in (-\infty,\infty) \end{equation*} on metric measure space $ (M,g,e^{-\xi}\mathrm{d} v_g)$ with boundary , where $ \Delta_\xi=\Delta +\left \langle \nabla\cdot , \nabla \xi\right \rangle $. For this equation, we derive Li-Yau type gradient estimates and Hamilton's type gradient estimates. Secondly, we obtain gradient estimates for positive solution of the following elliptical type equation \begin{equation} \Delta_\xi(u)- q u =A(u)\end{equation} on complete noncompact metric measure space $(M,g,e^{-\xi}\mathrm{d} v_g)$ with boundary.
Comment: The main result of this paper, we think, is not worth publishing, since the condition is too strong and not natural. This paper is needed to improved in the future
Databáze: arXiv