Autor: |
Buliček, Miroslav, Gwiazda, Piotr, Skrzeczkowski, Jakub, Woźnicki, Jakub |
Rok vydání: |
2022 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We consider the system of equations describing the flow of incompressible fluids in bounded domain. In the considered setting, the Cauchy stress tensor is a monotone mapping and has asymptotically $(s-1)$-growth with the parameter $s$ depending on the spatial and time variable. We do not assume any smoothness of $s$ with respect to time variable and assume the log-H\"{o}lder continuity with respect to spatial variable. Such a setting is a natural choice if the material properties are instantaneously, e.g. by the switched electric field. We establish the long time and the large data existence of weak solution provided that $s\ge(3d+2)(d+2)$. |
Databáze: |
arXiv |
Externí odkaz: |
|