Stabilizing fluctuating spin-triplet superconductivity in graphene via induced spin-orbit coupling
Autor: | Curtis, Jonathan B., Poniatowski, Nicholas R., Xie, Yonglong, Yacoby, Amir, Demler, Eugene, Narang, Prineha |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Phys. Rev. Lett. 130, 196001 (2023) |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevLett.130.196001 |
Popis: | A recent experiment showed that proximity induced Ising spin-orbit coupling enhances the spin-triplet superconductivity in Bernal bilayer graphene. Here, we show that, due to the nearly perfect spin rotation symmetry of graphene, the fluctuations of the spin orientation of the triplet order parameter suppress the superconducting transition to nearly zero temperature. Our analysis shows that both Ising spin-orbit coupling and in-plane magnetic field can eliminate these low-lying fluctuations and can greatly enhance the transition temperature, consistent with the recent experiment. Our model also suggests the possible existence of a phase at small anisotropy and magnetic field which exhibits quasi-long-range ordered spin-singlet charge 4e superconductivity, even while the triplet 2e superconducting order only exhibits short-ranged correlations. Finally, we discuss relevant experimental signatures. Comment: 6 pages, 2 figures + 8 pages, 1 figure supplemental |
Databáze: | arXiv |
Externí odkaz: |