$E_\infty$-Ring structures on the $K$-theory of assemblers and point counting
Autor: | Zakharevich, Inna |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We construct a monoidal structure on the category of assemblers. As an application of this, we construct a derived local zeta-function which takes a variety over a finite field to the set of points over the separable closure, and use the structure of this map to detect interesting elements in $K_1(\mathbf{Var}_k)$. |
Databáze: | arXiv |
Externí odkaz: |