Borel complexity of modules

Autor: Laskowski, Michael C., Ulrich, Danielle S.
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: We prove that for a countable, commutative ring $R$, the class of countable $R$-modules either has only countably many isomorphism types, or else it is Borel complete. The machinery gives a succinct proof of the Borel completeness of TFAB, the class of torsion-free abelian groups. We also prove that for any countable ring $R$, both the class of left $R$-modules endowed with an endomorphism and the class of left $R$-modules with four named submodules are Borel complete.
Databáze: arXiv