Borel complexity of modules
Autor: | Laskowski, Michael C., Ulrich, Danielle S. |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that for a countable, commutative ring $R$, the class of countable $R$-modules either has only countably many isomorphism types, or else it is Borel complete. The machinery gives a succinct proof of the Borel completeness of TFAB, the class of torsion-free abelian groups. We also prove that for any countable ring $R$, both the class of left $R$-modules endowed with an endomorphism and the class of left $R$-modules with four named submodules are Borel complete. |
Databáze: | arXiv |
Externí odkaz: |