Some criteria for integer sequences pair being realizable by a graph
Autor: | Guo, Jiyun, Fu, Miao, Wang, Jun |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $A=(a_1,\ldots,a_n)$ and $B=(b_1,\ldots,b_n)$ be two sequences of nonnegative integers with $a_i \le b_i$ for $1\le i\le n$. The pair $(A;B)$ is said to be realizable by a graph if there exists a simple graph $G$ with vertices $v_1,\ldots, v_n$ such that $a_i\le d_G(v_i)\le b_i$ for $1\le i\le n$. Let $\preceq$ denote the lexicographic ordering on $Z\times Z:$ $(a_{i+1},b_{i+1})\preceq (a_i,b_i)\Longleftrightarrow [(a_{i+1} |
Databáze: | arXiv |
Externí odkaz: |