Quantitative homogenization of principal Dirichlet eigenvalue shape optimizers

Autor: Feldman, William M
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: We apply new results on free boundary regularity of one-phase almost minimizers in periodic media to obtain a quantitative convergence rate for the shape optimizers of the first Dirichlet eigenvalue in periodic homogenization. We obtain a linear (with logarithmic factors) convergence rate for the optimizing eigenvalue. Large scale Lipschitz free boundary regularity of almost minimizers is used to apply the optimal $L^2$ homogenization theory in Lipschitz domains of Kenig, Lin and Shen. A key idea, to deal with the hard constraint on the volume, is a combination of a large scale almost dilation invariance with a selection principle argument.
Comment: 43 pages
Databáze: arXiv