Quantitative homogenization of principal Dirichlet eigenvalue shape optimizers
Autor: | Feldman, William M |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We apply new results on free boundary regularity of one-phase almost minimizers in periodic media to obtain a quantitative convergence rate for the shape optimizers of the first Dirichlet eigenvalue in periodic homogenization. We obtain a linear (with logarithmic factors) convergence rate for the optimizing eigenvalue. Large scale Lipschitz free boundary regularity of almost minimizers is used to apply the optimal $L^2$ homogenization theory in Lipschitz domains of Kenig, Lin and Shen. A key idea, to deal with the hard constraint on the volume, is a combination of a large scale almost dilation invariance with a selection principle argument. Comment: 43 pages |
Databáze: | arXiv |
Externí odkaz: |