A modular analogue of a problem of Vinogradov

Autor: Acharya, Ratnadeep, Drappeau, Sary, Ganguly, Satadal, Ramaré, Olivier
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: Given a primitive, non-CM, holomorphic cusp form $f$ with normalized Fourier coefficients $a(n)$ and given an interval $I\subset [-2, 2]$, we study the least prime $p$ such that $a(p)\in I$ . This can be viewed as a modular form analogue of Vinogradov's problem on the least quadratic non-residue. We obtain strong explicit bounds on $p$, depending on the analytic conductor of $f$ for some specific choices of $I$.
Comment: 14 pages
Databáze: arXiv