A note on Hopf's lemma and strong minimum principle for nonlocal equations with non-standard growth
Autor: | Sen, Abhrojyoti |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $\Omega\subset \mathbb{R}^n $ be any open set and $u$ be a weak supersolution of $\mathcal{L}u=c(x)g(|u|)\frac{u}{|u|}$ where \[\mathcal{L}u(x)=\text{p.v.} \int_{\mathbb{R}^n} g\left(\frac{|u(x)-u(y)|}{|x-y|^s}\right) \frac{u(x)-u(y)}{|u(x)-u(y)|} K(x,y)\frac{dy}{|x-y|^s}\] and $g=G^{\prime}$ for some Young function $G.$ This note imparts a Hopf's type lemma and strong minimum principle for $u$ when $c(x)$ is continuous in $\bar{\Omega}$ that extend the results of Del Pezzo and Quaas (JDE-2017) in fractional Orlicz-Sobolev setting. Comment: 13 pages, To appear in Forum Mathematicum |
Databáze: | arXiv |
Externí odkaz: |