Arithmetic Demailly Approximation Theorem

Autor: Qu, Binggang, Yin, Hang
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: We generalize the Demailly approximation theorem from complex geometry to Arakelov geometry.As an application, let $X/\mathbb{Q}$ be an integral projective variety and $\overline N$ be an adelic line bundle on $X$, we prove that $\operatorname{ess}(\overline N) \geq 0$ $\Longrightarrow $ $\overline N$ pseudo-effective. This was proved in [Bal21], assuming $\overline{N}$ relatively semipositive. We show in the appendix that the above assertion is also true for adelic line bundles on quasi-projective varieties, under the framework of [YZ22].
Databáze: arXiv