Gassner and Burau representations over $\mathbb{Z}_p$-modules
Autor: | Bharathram, Vasudha |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study two classical representations of Artin's braid group and their modulo $p$ reductions. We use topological methods to show that the Gassner representation $\tau_n: B_n\to\text{GL}_n(\mathbb{Z}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}])$ is faithful for all $n$, and furthermore that it is faithful modulo $p$ for all integers $p>1$. We then give a novel proof that the Burau representation of $B_3$ is faithful modulo $p$ for all $p>1$, and suggest applications to the modulo $p$ Burau representation for higher braid groups. Comment: Comments welcome! |
Databáze: | arXiv |
Externí odkaz: |