A uniform metrical theorem in multiplicative Diophantine approximation
Autor: | Björklund, Michael, Fregoli, Reynold, Gorodnik, Alexander |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For Lebesgue generic $(x_1,x_2)\in \mathbb{R}^2$, we investigate the distribution of small values of products $q\cdot \|qx_1\| \cdot \|qx_2\|$ with $q\in\mathbb{N}$, where $\|\cdot \|$ denotes the distance to the closest integer. The main result gives an asymptotic formula for the number of $1\le q\le T$ such that $$ a_T Comment: The Borel-Cantelli argument in the previous version is wrong, and has been corrected in the present version |
Databáze: | arXiv |
Externí odkaz: |