pystacked: Stacking generalization and machine learning in Stata
Autor: | Ahrens, Achim, Hansen, Christian B., Schaffer, Mark E. |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | pystacked implements stacked generalization (Wolpert, 1992) for regression and binary classification via Python's scikit-learn. Stacking combines multiple supervised machine learners -- the "base" or "level-0" learners -- into a single learner. The currently supported base learners include regularized regression, random forest, gradient boosted trees, support vector machines, and feed-forward neural nets (multi-layer perceptron). pystacked can also be used with as a `regular' machine learning program to fit a single base learner and, thus, provides an easy-to-use API for scikit-learn's machine learning algorithms. Comment: The pystacked package is available here: https://github.com/aahrens1/pystacked |
Databáze: | arXiv |
Externí odkaz: |