pystacked: Stacking generalization and machine learning in Stata

Autor: Ahrens, Achim, Hansen, Christian B., Schaffer, Mark E.
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: pystacked implements stacked generalization (Wolpert, 1992) for regression and binary classification via Python's scikit-learn. Stacking combines multiple supervised machine learners -- the "base" or "level-0" learners -- into a single learner. The currently supported base learners include regularized regression, random forest, gradient boosted trees, support vector machines, and feed-forward neural nets (multi-layer perceptron). pystacked can also be used with as a `regular' machine learning program to fit a single base learner and, thus, provides an easy-to-use API for scikit-learn's machine learning algorithms.
Comment: The pystacked package is available here: https://github.com/aahrens1/pystacked
Databáze: arXiv