Popis: |
Inspired by the ability of deep generative models to generate highly realistic images, much recent work has made progress in enhancing underexposed images globally. However, the local image enhancement approach has not been explored, although they are requisite in the real-world scenario, e.g., fixing local underexposure. In this work, we define a new task setting for underexposed image enhancement where users are able to control which region to be enlightened with an input mask. As indicated by the mask, an image can be divided into three areas, including Masked Area A, Transition Area B, and Unmasked Area C. As a result, Area A should be enlightened to the desired lighting, and there shall be a smooth transition (Area B) from the enlightened area (Area A) to the unchanged region (Area C). To finish this task, we propose two methods: Concatenate the mask as additional channels (MConcat), Mask-based Normlization (MNorm). While MConcat simply append the mask channels to the input images, MNorm can dynamically enhance the spatial-varying pixels, guaranteeing the enhanced images are consistent with the requirement indicated by the input mask. Moreover, MConcat serves as a play-and-plug module, and can be incorporated with existing networks, which globally enhance images, to achieve the local enhancement. And the overall network can be trained with three kinds of loss functions in Area A, Area B, and Area C, which are unified for various model structures. We perform extensive experiments on public datasets with various parametric approaches for low-light enhancement, %the Convolutional-Neutral-Network-based model and Transformer-based model, demonstrating the effectiveness of our methods. |