The structure of subspaces in Orlicz spaces between $L^1$ and $L^2$

Autor: Astashkin, S. V.
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: A subspace $H$ of a rearrangement invariant space $X$ on $[0,1]$ is strongly embedded in $X$ if, in $H$, convergence in $X$-norm is equivalent to convergence in measure. We obtain necessary and sufficient conditions on an Orlicz function $M$, under which the unit ball of an arbitrary strongly embedded subspace in the Orlicz space $L_M$ has equi-absolutely continuous norms in $L_M$.
Comment: 24 pages
Databáze: arXiv