The structure of subspaces in Orlicz spaces between $L^1$ and $L^2$
Autor: | Astashkin, S. V. |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | A subspace $H$ of a rearrangement invariant space $X$ on $[0,1]$ is strongly embedded in $X$ if, in $H$, convergence in $X$-norm is equivalent to convergence in measure. We obtain necessary and sufficient conditions on an Orlicz function $M$, under which the unit ball of an arbitrary strongly embedded subspace in the Orlicz space $L_M$ has equi-absolutely continuous norms in $L_M$. Comment: 24 pages |
Databáze: | arXiv |
Externí odkaz: |