Retour sur l'arithm\'etique des intersections de deux quadriques, avec un appendice par A. Kuznestov

Autor: Colliot-Thélène, Jean-Louis
Jazyk: francouzština
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1515/crelle-2023-0081
Popis: Lichtenbaum proved that index and period coincide for a curve of genus one over a $p$-adic field. Salberger proved that the Hasse principle holds for a smooth complete intersection of two quadrics $X \subset P^n$ over a number field, if it contains a conic and if $n\geq 5$. Building upon these two results, we extend recent results of Creutz and Viray (2021) on the existence of a quadratic point on intersections of two quadrics over $p$-adic fields and number fields. We then recover Heath-Brown's theorem (2018) that the Hasse principle holds for smooth complete intersections of two quadrics in $P^7$. We also give an alternate proof of a theorem of Iyer and Parimala (2022) on the local-global principle in the case $n=5$.
Comment: Paper in French, appendix by A. Kuznetsov in English. Version v2 takes into account the remarks of a referee. Final version, to appear in Journal f\"ur die reine und angewandte Mathematik (Crelle)
Databáze: arXiv