Stability estimates for singular SDEs and applications

Autor: Galeati, Lucio, Ling, Chengcheng
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: We consider multidimensional SDEs with singular drift $b$ and Sobolev diffusion coefficients $\sigma$, satisfying Krylov--R\"ockner type assumptions. We prove several stability estimates, comparing solutions driven by different $(b^i,\sigma^i)$, both for It\^o and Stratonovich SDEs, possibly depending on negative Sobolev norms of the difference $b^1-b^2$. We then discuss several applications of these results to McKean--Vlasov SDEs, criteria for strong compactness of solutions and Wong--Zakai type theorems.
Comment: 33 pages
Databáze: arXiv