Upper bound on the regularity of the Lyapunov exponent for random products of matrices

Autor: Bezerra, Jamerson, Duarte, Pedro
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: We prove that if $\mu$ is a finitely supported measure on $\text{SL}_2(\mathbb{R})$ with positive Lyapunov exponent but not uniformly hyperbolic, then the Lyapunov exponent function is not $\alpha$-H\"older around $\mu$ for any $\alpha$ exceeding the Shannon entropy of $\mu$ over the Lyapunov exponent of $\mu$.
Databáze: arXiv