Upper bound on the regularity of the Lyapunov exponent for random products of matrices
Autor: | Bezerra, Jamerson, Duarte, Pedro |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that if $\mu$ is a finitely supported measure on $\text{SL}_2(\mathbb{R})$ with positive Lyapunov exponent but not uniformly hyperbolic, then the Lyapunov exponent function is not $\alpha$-H\"older around $\mu$ for any $\alpha$ exceeding the Shannon entropy of $\mu$ over the Lyapunov exponent of $\mu$. |
Databáze: | arXiv |
Externí odkaz: |