Involutory permutation automorphisms of binary linear codes
Autor: | Aksu, Fatma Altunbulak, Hafezieh, Roghayeh, Tuvay, İpek |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Journal of Algebra and its Applications(2023) |
Druh dokumentu: | Working Paper |
DOI: | 10.1142/S0219498825501373 |
Popis: | We investigate the properties of binary linear codes of even length whose permutation automorphism group is a cyclic group generated by an involution. Up to dimension or co-dimension $4$, we show that there is no quasi group code whose permutation automorphism group is isomorphic to $C_2$. By generalizing the method we use to prove this result, we obtain results on the structure of putative extremal self-dual $[72, 36, 16]$ and $[96, 48, 20]$ codes in the presence of an involutory permutation automorphism. Comment: 10 pages |
Databáze: | arXiv |
Externí odkaz: |