Diederich--Forn\ae ss index and global regularity in the $\overline{\partial}$--Neumann problem: domains with comparable Levi eigenvalues

Autor: Liu, Bingyuan, Straube, Emil J.
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: Let $\Omega$ be a smooth bounded pseudoconvex domain in $\mathbb{C}^{n}$. Let $1\leq q_{0}\leq (n-1)$. We show that if $q_{0}$--sums of eigenvalues of the Levi form are comparable, then if the Diederich--Forn\ae ss index of $\Omega$ is $1$, the $\overline{\partial}$--Neumann operators $N_{q}$ and the Bergman projections $P_{q-1}$ are regular in Sobolev norms for $q_{0}\leq q\leq n$. In particular, for domains in $\mathbb{C}^{2}$, Diederich--Forn\ae ss index $1$ implies global regularity in the $\overline{\partial}$--Neumann problem.
Comment: 16 pages
Databáze: arXiv