Robust second-order approximation of the compressible Euler equations with an arbitrary equation of state

Autor: Clayton, Bennett, Guermond, Jean-Luc, Maier, Matthias, Popov, Bojan, Tovar, Eric J.
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1016/j.jcp.2023.111926
Popis: This paper is concerned with the approximation of the compressible Euler equations supplemented with an arbitrary or tabulated equation of state. The proposed approximation technique is robust, formally second-order accurate in space, invariant-domain preserving, and works for every equation of state, tabulated or analytic, provided the pressure is nonnegative. An entropy surrogate functional that grows across shocks is proposed. The numerical method is verified with novel analytical solutions and then validated with several computational benchmarks seen in the literature.
Databáze: arXiv