The Chromatic Nullstellensatz
Autor: | Burklund, Robert, Schlank, Tomer M., Yuan, Allen |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We show that Lubin--Tate theories attached to algebraically closed fields are characterized among $T(n)$-local $\mathbb{E}_{\infty}$-rings as those that satisfy an analogue of Hilbert's Nullstellensatz. Furthermore, we show that for every $T(n)$-local $\mathbb{E}_{\infty}$-ring $R$, the collection of $\mathbb{E}_\infty$-ring maps from $R$ to such Lubin-Tate theories jointly detect nilpotence. In particular, we deduce that every non-zero $T(n)$-local $\mathbb{E}_{\infty}$-ring $R$ admits an $\mathbb{E}_\infty$-ring map to such a Lubin-Tate theory. As consequences, we construct $\mathbb{E}_{\infty}$ complex orientations of algebraically closed Lubin-Tate theories, compute the strict Picard spectra of such Lubin-Tate theories, and prove redshift for the algebraic $\mathrm{K}$-theory of arbitrary $\mathbb{E}_{\infty}$-rings. Comment: 108 pages, 1 Figure, comments welcome! |
Databáze: | arXiv |
Externí odkaz: |