Properties of the gradient squared of the discrete Gaussian free field
Autor: | Cipriani, Alessandra, Hazra, Rajat S., Rapoport, Alan, Ruszel, Wioletta M. |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | J Stat Phys 190, 171 (2023) |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s10955-023-03187-3 |
Popis: | In this paper we study the properties of the centered (norm of the) gradient squared of the discrete Gaussian free field in $U_{\epsilon}=U/\epsilon\cap \mathbb{Z}^d$, $U\subset \mathbb{R}^d$ and $d\geq 2$. The covariance structure of the field is a function of the transfer current matrix and this relates the model to a class of systems (e.g. height-one field of the Abelian sandpile model or pattern fields in dimer models) that have a Gaussian limit due to the rapid decay of the transfer current. Indeed, we prove that the properly rescaled field converges to white noise in an appropriate local Besov-H\"older space. Moreover, under a different rescaling, we determine the $k$-point correlation function and cumulants on $U_{\epsilon}$ and in the continuum limit as $\epsilon\to 0$. This result is related to the analogue limit for the height-one field of the Abelian sandpile (\citet{durre}), with the same conformally covariant property in $d=2$. Comment: 32 pages, 1 figure |
Databáze: | arXiv |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |