Maximal Speed of Propagation in Open Quantum Systems

Autor: Breteaux, Sébastien, Faupin, Jérémy, Lemm, Marius, Sigal, Israel Michael
Rok vydání: 2022
Předmět:
Zdroj: The Physics and Mathematics of Elliott Lieb. The 90th Anniversary Volume I. R.L. Frank, A. Laptev, M. Lewin and R. Seiringer (eds.) EMS Press. (2022)
Druh dokumentu: Working Paper
DOI: 10.4171/90-1/6
Popis: We prove a maximal velocity bound for the dynamics of Markovian open quantum systems. The dynamics are described by one-parameter semi-groups of quantum channels satisfying the von Neumann-Lindblad equation. Our result says that dynamically evolving states are contained inside a suitable light cone up to polynomial errors. We also give a bound on the slope of the light cone, i.e., the maximal propagation speed. The result implies an upper bound on the speed of propagation of local perturbations of stationary states in open quantum systems.
Databáze: arXiv