Framed cohomological Hall algebras and cohomological stable envelopes
Autor: | Botta, Tommaso Maria |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Lett Math Phys 113, 95 (2023) |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s11005-023-01716-5 |
Popis: | There are multiple conjectures relating the cohomological Hall algebras (CoHAs) of certain substacks of the moduli stack of representations of a quiver $Q$ to the Yangian $Y^{Q}_{MO}$ by Maulik-Okounkov, whose construction is based on the notion of stable envelopes of Nakajima varieties. In this article, we introduce the cohomological Hall algebra of the moduli stack of framed representations of a quiver $Q$ (framed CoHA) and we show that the equivariant cohomology of the disjoint union of the Nakajima varieties $\mathcal{M}_Q(\text{v},\text{w})$ for all dimension vectors $\text{v}$ and framing vectors $\text{w}$ has a canonical structure of subalgebra of the framed CoHA. Restricted to this subalgebra, the algebra multiplication is identified with the stable envelope map. As a corollary, we deduce an explicit inductive formula to compute stable envelopes in terms of tautological classes. Comment: 35 pages. v3: exposition improved, typos corrected |
Databáze: | arXiv |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |