Index of bipolar surfaces to Otsuki tori

Autor: Morozov, Egor
Rok vydání: 2022
Předmět:
Zdroj: Math Phys Anal Geom 27, 22 (2024)
Druh dokumentu: Working Paper
DOI: 10.1007/s11040-024-09494-9
Popis: For each rational number $p/q\in (1/2,\sqrt 2/2)$ one can construct an $\mathbb S^1$-equivariant minimal torus in $\mathbb S^3$ called Otsuki torus and denoted by $O_{p/q}$. The Lawson's bipolar surface construction applied to $O_{p/q}$ gives a minimal torus $\widetilde O_{p/q}$ in $\mathbb S^4$. In this paper we give upper and lower bounds on the Morse index and the nullity of these tori for $p/q$ close to $\sqrt 2/2$. We also state a numerically assisted conjecture concerning the general case.
Comment: 16 pages, v2: improved structure and exposition
Databáze: arXiv