Index of bipolar surfaces to Otsuki tori
Autor: | Morozov, Egor |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Math Phys Anal Geom 27, 22 (2024) |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s11040-024-09494-9 |
Popis: | For each rational number $p/q\in (1/2,\sqrt 2/2)$ one can construct an $\mathbb S^1$-equivariant minimal torus in $\mathbb S^3$ called Otsuki torus and denoted by $O_{p/q}$. The Lawson's bipolar surface construction applied to $O_{p/q}$ gives a minimal torus $\widetilde O_{p/q}$ in $\mathbb S^4$. In this paper we give upper and lower bounds on the Morse index and the nullity of these tori for $p/q$ close to $\sqrt 2/2$. We also state a numerically assisted conjecture concerning the general case. Comment: 16 pages, v2: improved structure and exposition |
Databáze: | arXiv |
Externí odkaz: |