Closed embedded self-shrinkers of mean curvature flow

Autor: Riedler, Oskar
Rok vydání: 2022
Předmět:
Zdroj: Journal of Geometric Analysis 33, 172 (2023)
Druh dokumentu: Working Paper
DOI: 10.1007/s12220-023-01217-w
Popis: In this article we show the existence of closed embedded self-shrinkers in $\Bbb{R}^{n+1}$ that are topologically of type $S^1\times M$, where $M\subset S^n$ is any isoparametric hypersurface in $S^n$ for which the multiplicities of the principle curvatures agree. This yields new examples of closed self-shrinkers, for example self-shrinkers of topological type $S^1\times S^k\times S^k\subset \Bbb R^{2k+2}$ for any $k$. If the number of distinct principle curvatures of $M$ is one the resulting self-shrinker is topologically $S^1\times S^{n-1}$ and the construction recovers Angenent's shrinking doughnut.
Comment: 31 pages, 3 figures
Databáze: arXiv