On the polymatroid Tutte polynomial
Autor: | Guan, Xiaxia, Yang, Weiling, Jin, Xian'an |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | The Tutte polynomial is a well-studied invariant of matroids. The polymatroid Tutte polynomial $\mathcal{J}_{P}(x,y)$, introduced by Bernardi et al., is an extension of the classical Tutte polynomial from matroids to polymatroids $P$. In this paper, we first prove that $\mathcal{J}_{P}(x,t)$ and $\mathcal{J}_{P}(t,y)$ are interpolating for any fixed real number $t\geq 1$, and then we study the coefficients of high-order terms in $\mathcal{J}_{P}(x,1)$ and $\mathcal{J}_{P}(1,y)$. These results generalize results on interior and exterior polynomials of hypergraphs. Comment: 14 pages, 0 figures |
Databáze: | arXiv |
Externí odkaz: |