A Stochastic Mobility-Driven Spatially Explicit SEIQRD COVID-19 Model with VOCs, Seasonality, and Vaccines
Autor: | Alleman, Tijs W., Rollier, Michiel, Vergeynst, Jenna, Baetens, Jan M. |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Applied Mathematical Modelling, Vol. 123, November 2023, Pages 507-525 |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.apm.2023.06.027 |
Popis: | In this work, we extend our previously developed compartmental SEIQRD model for SARS-CoV-2 in Belgium. We introduce SARS-CoV-2 variants of concern, vaccines, and seasonality in our model, as their addition has proven necessary for modelling SARS-CoV-2 transmission dynamics during the 2020-2021 COVID-19 pandemic in Belgium. The model is geographically stratified into eleven spatial patches (provinces), and a telecommunication dataset provided by Belgium's biggest operator is used to incorporate interprovincial mobility. We calibrate the model using the daily number of hospitalisations in each province and serological data. We find the model adequately describes these data, but the addition of interprovincial mobility was not necessary to obtain an accurate description of the 2020-2021 SARS-CoV-2 pandemic in Belgium. We further demonstrate how our model can be used to help policymakers decide on the optimal timing of the release of social restrictions. We find that adding spatial heterogeneity by geographically stratifying the model results in more uncertain model projections as compared to an equivalent nation-level model, which has both communicative advantages and disadvantages. We finally discuss the impact of imposing local mobility or social contact restrictions to contain an epidemic in a given province and find that lowering social contact is a more effective strategy than lowering mobility. Comment: 27 pages main text containing 12 figures and 3 tables; 26 pages supplementary material containing 19 figures and 8 tables; 8 final pages containing 63 references |
Databáze: | arXiv |
Externí odkaz: |