Equivariant Hodge polynomials of heavy/light moduli spaces
Autor: | Kannan, Siddarth, Serpente, Stefano, Yun, Claudia He |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $\bar{\mathcal{M}}_{g, m|n}$ denote Hassett's moduli space of weighted pointed stable curves of genus $g$ for the heavy/light weight data $\left(1^{(m)}, 1/n^{(n)}\right)$, and let $\mathcal{M}_{g, m|n} \subset \bar{\mathcal{M}}_{g, m|n}$ be the locus parameterizing smooth, not necessarily distinctly marked curves. We give a change-of-variables formula which computes the generating function for $(S_m\times S_n)$-equivariant Hodge-Deligne polynomials of these spaces in terms of the generating functions for $S_{n}$-equivariant Hodge-Deligne polynomials of $\bar{\mathcal{M}}_{g,n}$ and $\mathcal{M}_{g,n}$. Comment: 21 pages, 3 tables. Edits based on referee suggestions |
Databáze: | arXiv |
Externí odkaz: |