Equivariant Hodge polynomials of heavy/light moduli spaces

Autor: Kannan, Siddarth, Serpente, Stefano, Yun, Claudia He
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: Let $\bar{\mathcal{M}}_{g, m|n}$ denote Hassett's moduli space of weighted pointed stable curves of genus $g$ for the heavy/light weight data $\left(1^{(m)}, 1/n^{(n)}\right)$, and let $\mathcal{M}_{g, m|n} \subset \bar{\mathcal{M}}_{g, m|n}$ be the locus parameterizing smooth, not necessarily distinctly marked curves. We give a change-of-variables formula which computes the generating function for $(S_m\times S_n)$-equivariant Hodge-Deligne polynomials of these spaces in terms of the generating functions for $S_{n}$-equivariant Hodge-Deligne polynomials of $\bar{\mathcal{M}}_{g,n}$ and $\mathcal{M}_{g,n}$.
Comment: 21 pages, 3 tables. Edits based on referee suggestions
Databáze: arXiv