Arithmetical rank and cohomological dimension of generalized binomial edge ideals
Autor: | Katsabekis, Anargyros |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $G$ be a connected and simple graph on the vertex set $[n]$. To the graph $G$ one can associate the generalized binomial edge ideal $J_{m}(G)$ in the polynomial ring $R=K[x_{ij}: i \in [m], j \in [n]]$. We provide a lower bound for the cohomological dimension of $J_{m}(G)$. We also study when $J_{m}(G)$ is a cohomologically complete intersection. Finally, we show that the arithmetical rank of $J_{2}(G)$ equals the projective dimension of $R/J_{2}(G)$ in several cases. Comment: Journal of Algebra and its Applications (to appear) |
Databáze: | arXiv |
Externí odkaz: |