A Distributed Massive MIMO Channel Sounder for 'Big CSI Data'-driven Machine Learning

Autor: Euchner, Florian, Gauger, Marc, Dörner, Sebastian, Brink, Stephan ten
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: A distributed massive MIMO channel sounder for acquiring large CSI datasets, dubbed DICHASUS, is presented. The measured data has potential applications in the study of various machine learning algorithms for user localization, JCAS, channel charting, enabling massive MIMO in FDD operation, and many others. The proposed channel sounder architecture is distinct from similar previous designs in that each individual single-antenna receiver is completely autonomous, enabling arbitrary, spatially distributed antenna deployments, and offering virtually unlimited scalability in the number of antennas. Optionally, extracted channel coefficient vectors can be tagged with ground truth position data, obtained either through a GNSS receiver (for outdoor operation) or through various indoor positioning techniques.
Databáze: arXiv