A Generalization of Zwegers' $\mu$-Function According to the $q$-Hermite-Weber Difference Equation

Autor: Shibukawa, Genki, Tsuchimi, Satoshi
Rok vydání: 2022
Předmět:
Zdroj: SIGMA 19 (2023), 014, 23 pages
Druh dokumentu: Working Paper
DOI: 10.3842/SIGMA.2023.014
Popis: We introduce a one parameter deformation of the Zwegers' $\mu$-function as the image of $q$-Borel and $q$-Laplace transformations of a fundamental solution for the $q$-Hermite-Weber equation. We further give some formulas for our generalized $\mu$-function, for example, forward and backward shift, translation, symmetry, a difference equation for the new parameter, and bilateral $q$-hypergeometric expressions. From one point of view, the continuous $q$-Hermite polynomials are some special cases of our $\mu$-function, and the Zwegers' $\mu$-function is regarded as a continuous $q$-Hermite polynomial of ''$-1$ degree''.
Databáze: arXiv