The $\{\beta\}$-expansion for Adler function, Bjorken Sum Rule, and the Crewther-Broadhurst-Kataev relation at order $O(\alpha_s^4)$
Autor: | Baikov, P. A., Mikhailov, S. V. |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | JHEP09(2022)185 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/JHEP09(2022)185 |
Popis: | We derive explicit expressions for the elements of the $\{ \beta \}$-expansion for the nonsinglet Adler $D_A$-function and Bjorken polarized sum rules $S^{Bjp}$ in the N$^4$LO using recent results by Chetyrkin for these quantities computed within extended QCD including any number of fermion representations. We discuss the properties of the $\{ \beta \}$-expansion for $D_A$ and $S^{Bjp}$ at higher orders which follow from the Crewther [1] and the Broadhurst-Kataev [2] relation. Comment: 19 pages, added the refs [15], [16], [19]; sec.3 a bit extended |
Databáze: | arXiv |
Externí odkaz: |