Contextual Squeeze-and-Excitation for Efficient Few-Shot Image Classification
Autor: | Patacchiola, Massimiliano, Bronskill, John, Shysheya, Aliaksandra, Hofmann, Katja, Nowozin, Sebastian, Turner, Richard E. |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Recent years have seen a growth in user-centric applications that require effective knowledge transfer across tasks in the low-data regime. An example is personalization, where a pretrained system is adapted by learning on small amounts of labeled data belonging to a specific user. This setting requires high accuracy under low computational complexity, therefore the Pareto frontier of accuracy vs. adaptation cost plays a crucial role. In this paper we push this Pareto frontier in the few-shot image classification setting with a key contribution: a new adaptive block called Contextual Squeeze-and-Excitation (CaSE) that adjusts a pretrained neural network on a new task to significantly improve performance with a single forward pass of the user data (context). We use meta-trained CaSE blocks to conditionally adapt the body of a network and a fine-tuning routine to adapt a linear head, defining a method called UpperCaSE. UpperCaSE achieves a new state-of-the-art accuracy relative to meta-learners on the 26 datasets of VTAB+MD and on a challenging real-world personalization benchmark (ORBIT), narrowing the gap with leading fine-tuning methods with the benefit of orders of magnitude lower adaptation cost. Comment: Advances in Neural Information Processing Systems (NeurIPS 2022) |
Databáze: | arXiv |
Externí odkaz: |