Autor: |
D'Aniello, Emma, Gauvan, Anthony, Moonens, Laurent |
Rok vydání: |
2022 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We introduce the notion of \textit{Perron capacity} of a set of slopes $\Omega \subset \mathbb{R}$. Precisely, we prove that if the Perron capacity of $\Omega$ is finite then the directional maximal operator associated $M_\Omega$ is not bounded on $L^p(\mathbb{R}^2)$ for any $1 < p < \infty$. This allows us to prove that the set $$\Omega_{ \boldsymbol{e}} =\left\{ \frac{\cos n}{n}: n\in \mathbb{N}^* \right\}$$ is not finitely lacunary which answers a question raised by A. Stokolos. |
Databáze: |
arXiv |
Externí odkaz: |
|