On the eigenvalues of operators with gaps. Application to Dirac operators

Autor: Dolbeault, Jean, Esteban, Maria J., Séré, Eric
Rok vydání: 2022
Předmět:
Zdroj: J. Funct. Anal. 174 (2000), p. 208-226
Druh dokumentu: Working Paper
DOI: 10.1006/jfan.1999.3542
Popis: This paper is devoted to a general min-max characterization of the eigenvalues in a gap of the essential spectrum of a self-adjoint unbounded operator. We prove an abstract theorem, then we apply it to the case of Dirac operators with a Coulomb-like potential. The result is optimal for the Coulomb potential. An erratum is appended at the end of the tex.
Comment: The main goal of this submission is to add an erratum to the old paper published in 2000
Databáze: arXiv