Low complexity of optimizing measures over an expanding circle map
Autor: | Gao, Rui, Shen, Weixiao |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we prove that for real analytic expanding circle maps, all optimizing measures of a real analytic potential function have zero entropy, unless the potential is cohomologous to constant. We use the group structure of the symbolic space to solve a transversality problem involved. We also discuss applications to optimizing measures for generic smooth potentials and to Lyapunov optimizing measures. Comment: 15 pages, minor corrections |
Databáze: | arXiv |
Externí odkaz: |