On Certain Genus 0 Entire Functions
Autor: | Zhang, Ruiming |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this work we prove that an entire function $f(z)$ has only negative zeros if and only if its order is strictly less $1$, its root sequence is real-part dominating and there exists an nonnegative integer $m$ the real function $\left(-\frac{1}{x}\right)^{m}\frac{d^{k}}{dx^{k}}\left(x^{k+m}\frac{d^{m}}{dx^{m}}\left(\frac{f'(x)}{f(x)}\right)\right)$ are completely monotonic on $(0,\infty)$ for all nonnegative integer $k$. As an application we state a necessary and sufficient condition for the Riemann hypothesis and generalized Riemann hypothesis for a primitive Dirichlet character. Comment: 13pages |
Databáze: | arXiv |
Externí odkaz: |