Skein lasagna modules and handle decompositions
Autor: | Manolescu, Ciprian, Walker, Kevin, Wedrich, Paul |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | The skein lasagna module is an extension of Khovanov-Rozansky homology to the setting of a four-manifold and a link in its boundary. This invariant plays the role of the Hilbert space of an associated fully extended (4+epsilon)-dimensional TQFT. We give a general procedure for expressing the skein lasagna module in terms of a handle decomposition for the four-manifold. We use this to calculate a few examples, and show that the skein lasagna module can sometimes be locally infinite dimensional. Comment: 28 pages, comments welcome, to appear in Adv. Math |
Databáze: | arXiv |
Externí odkaz: |