Robust Inference for Change Points in High Dimension

Autor: Jiang, Feiyu, Wang, Runmin, Shao, Xiaofeng
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: This paper proposes a new test for a change point in the mean of high-dimensional data based on the spatial sign and self-normalization. The test is easy to implement with no tuning parameters, robust to heavy-tailedness and theoretically justified with both fixed-$n$ and sequential asymptotics under both null and alternatives, where $n$ is the sample size. We demonstrate that the fixed-$n$ asymptotics provide a better approximation to the finite sample distribution and thus should be preferred in both testing and testing-based estimation. To estimate the number and locations when multiple change-points are present, we propose to combine the p-value under the fixed-$n$ asymptotics with the seeded binary segmentation (SBS) algorithm. Through numerical experiments, we show that the spatial sign based procedures are robust with respect to the heavy-tailedness and strong coordinate-wise dependence, whereas their non-robust counterparts proposed in Wang et al. (2022) appear to under-perform. A real data example is also provided to illustrate the robustness and broad applicability of the proposed test and its corresponding estimation algorithm.
Databáze: arXiv