Gradient estimates for the Lagrangian mean curvature equation with critical and supercritical phase

Autor: Bhattacharya, Arunima, Mooney, Connor, Shankar, Ravi
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper, we prove interior gradient estimates for the Lagrangian mean curvature equation, if the Lagrangian phase is critical and supercritical and $C^{2}$. Combined with the a priori interior Hessian estimates proved in [Bha21, Bha22], this solves the Dirichlet boundary value problem for the critical and supercritical Lagrangian mean curvature equation with $C^0$ boundary data. We also provide a uniform gradient estimate for lower regularity phases that satisfy certain additional hypotheses.
Databáze: arXiv