Autor: |
Bruè, Elia, Mondino, Andrea, Semola, Daniele |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Geom. Funct. Anal. 33, 593-636 (2023) |
Druh dokumentu: |
Working Paper |
DOI: |
10.1007/s00039-023-00626-x |
Popis: |
We solve a conjecture raised by Kapovitch, Lytchak, and Petrunin by showing that the metric measure boundary is vanishing on any ${\rm RCD}(K,N)$ space without boundary. Our result, combined with [Kapovitch-Lytchak-Petrunin '21], settles an open question about the existence of infinite geodesics on Alexandrov spaces without boundary raised by Perelman and Petrunin in 1996. |
Databáze: |
arXiv |
Externí odkaz: |
|