The metric measure boundary of spaces with Ricci curvature bounded below

Autor: Bruè, Elia, Mondino, Andrea, Semola, Daniele
Rok vydání: 2022
Předmět:
Zdroj: Geom. Funct. Anal. 33, 593-636 (2023)
Druh dokumentu: Working Paper
DOI: 10.1007/s00039-023-00626-x
Popis: We solve a conjecture raised by Kapovitch, Lytchak, and Petrunin by showing that the metric measure boundary is vanishing on any ${\rm RCD}(K,N)$ space without boundary. Our result, combined with [Kapovitch-Lytchak-Petrunin '21], settles an open question about the existence of infinite geodesics on Alexandrov spaces without boundary raised by Perelman and Petrunin in 1996.
Databáze: arXiv