Cycles and divergent trajectories for a class of permutation sequences
Autor: | Simons, John L |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $f$ be a permutation from $\mathbb{N}_0$ onto $\mathbb{N}_0$. Let $x\in\mathbb{N}_0$ and consider a (finite or infinite) sequence $s= (x,f(x),f^2(x),\cdots)$. We call $s$ a permutation sequence. Let $D$ be the set of elements of $s$. If $D$ is a finite set then the sequence $s$ is a cycle, and if $D$ is an infinite set the sequence $s$ is a divergent trajectory. We derive theoretical and computational bounds for cycles and divergent trajectories for a defined class of permutations. |
Databáze: | arXiv |
Externí odkaz: |