Autor: |
Papageorgiou, Nikolaos S., Rădulescu, Vicenţiu D., Repovš, Dušan D. |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Potential Anal. 57:1 (2022), 55-82 |
Druh dokumentu: |
Working Paper |
DOI: |
10.1007/s11118-021-09905-4 |
Popis: |
We consider a nonlinear parametric Neumann problem driven by the anisotropic $(p,q)$-Laplacian and a reaction which exhibits the combined effects of a singular term and of a parametric superlinear perturbation. We are looking for positive solutions. Using a combination of topological and variational tools together with suitable truncation and comparison techniques, we prove a bifurcation-type result describing the set of positive solutions as the positive parameter $\lambda$ varies. We also show the existence of minimal positive solutions $u_\lambda^*$ and determine the monotonicity and continuity properties of the map $\lambda\mapsto u_\lambda^*$. |
Databáze: |
arXiv |
Externí odkaz: |
|